
1 

 

Performance Modeling to Support Multi-Tier Application Deployment to 

Infrastructure-as-a-Service Clouds 

Wes Lloyd
1,2

, Shrideep Pallickara
1
, Olaf David

1,2
,          

Jim Lyon
2
, Mazdak Arabi

2
 

1Department of Computer Science 
2Department of Civil and Environmental Engineering 

Colorado State University, Fort Collins, USA  

wes.lloyd, shrideep.pallickara, olaf.david, jim.lyon, 

mazdak.arabi@colostate.edu 

Ken Rojas 

USDA-Natural Resource Conservation Service 

Fort Collins, Colorado USA 

Ken.Rojas@ftc.usda.gov 
 

 

 
Abstract— Infrastructure-as-a-service (IaaS) clouds support 

migration of multi-tier applications through virtualization of 

diverse application stack(s) of components which may require 

various operating systems and environments.  To maximize 

performance of applications deployed to IaaS clouds while 

minimizing deployment costs, it is necessary to create virtual 

machine images to host application components with 

consideration for component dependencies that may affect load 

balancing of physical resources of VM hosts including CPU 

time, disk and network bandwidth.  This paper reports results 

of an investigation utilizing physical machine (PM) and virtual 

machine (VM) resource utilization statistics to build 

performance models to predict application performance and 

rank performance of compositions of application components 

deployed across VMs.   Our objective was to determine which 

component compositions provide best performance while 

requiring the fewest number of VMs.  Eighteen individual 

resource utilization statistics were investigated for use as 

independent variables to predict service execution time using 

four different modeling approaches.  Overall CPU time was the 

strongest predictor of execution time.  The strength of 

individual predictors varied with respect to the resource 

utilization profile of the applications tested.  CPU statistics 

including idle time and number of context switches were good 

predictors when the test application was more disk I/O bound, 

while disk I/O statistics were better predictors when the 

application was more CPU bound.  All of the performance 

models were effective at determining the best performing 

service composition deployments validating the utility of our 

approach.  

Keywords Cloud Computing; Infrastructure-as-a-Service; 

Performance Modeling; Provisioning Variation; Virtualization 

 

I.  INTRODUCTION 

Migration of multi-tier client/server applications to 
Infrastructure-as-a-Service (IaaS) clouds requires 
applications be decomposed into sets of service-based 
components known as the application stack.  Application 
stacks consist of components such as web server(s), 
application server(s), proxy server(s), database(s), file 
server(s) and other servers/services.   

Infrastructure-as-a-Service clouds support better 
utilization of server infrastructure by enabling multiplexing 
of resources.  Infrastructure supporting specific applications 

can be scaled based on demand while multiple applications 
share the physical infrastructure through the use of server 
virtualization.  IaaS clouds consisting of many physical 
servers with one or more multi-core CPUs can host Virtual 
Machines (VMs) enabling resource elasticity where the 
quantity, size, and location of VMs can change dynamically 
to meet varying system demand. 

Many challenges exist when deploying multi-tier 
applications to Infrastructure-as-a-Service clouds.  VM 
image composition requires application components to be 
composed across a set of VM images. Resource contention 
should be minimized by taking advantage of opportunistic 
placements by collocation of codependent components.  
Provisioning variation refers to the uncertainty of the 
physical location of VMs when deployed to IaaS clouds [2].  
VM physical location could lead to performance 
improvements or degradation depending on component 
resource requirements and interdependencies.  Internal 
resource contention occurs when application VMs are 
provisioned to the same physical machines (PMs) while 
competing for the same resources.  External resource 
contention can occur when different applications share 
physical infrastructure an important issue for public clouds.  
Virtualization overhead refers to the costs associated with 
emulating a computer as a software program on a physical 
host computer.  This overhead varies depending on the 
approaches used to multiplex physical resources among 
virtual hosts.  Virtualization hypervisors vary with respect to 
their ability to minimize this overhead with some generally 
responding better to certain resource sharing and simulation 
scenarios than others [1][4][5][16].  Resource provisioning 
refers to the challenge of allocating adequate virtual 
infrastructure to meet performance requirements while 
accounting for the challenges of image composition, 
provisioning variation, resource contention, and 
virtualization overhead.  Research and investigation into 
approaches supporting autonomic resource provisioning also 
known as autonomic infrastructure management is an active 
area of cloud computing research [17][18][19][20]. 

Service compositions must be determined which map 
application stacks across VM images.  Determining 
beneficial combinations of components which multiplex 
resources without causing unwanted resource contention 
poses a challenge.  Component compositions will vary for 
multi-tier applications as applications have different 
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application stacks of components and resource utilization 
profiles further complicating determination of ideal VM 
component deployments.    

Using brute force performance testing to determine 
optimal placements is only feasible for applications with 
small numbers of components.  Bell's number is the number 
of partitions of a set (k) consisting of (n) members [21].  If 
we consider an application as a set of (n) components, then 
the total number of possible component compositions for an 
application is Bell's number (k).  Table 1 shows the first few 
Bell numbers describing the possible component 
compositions for an application with (n) components.  
Beyond four components the number of possible service 
compositions rapidly grows large making brute force testing 
to benchmark performance for applications with a large 
number of components impractical.  Further complicating 
matters, public IaaS clouds typically do not provide the 
ability to control VM placements making it difficult, if not 
impossible, to deploy all possible placements.  Exclusive 
reservation of PMs may be available for an additional cost 
which allows for granular control of physical placement of 
VMs to achieve any composition. 

TABLE I.  MULTI-TIER APPLICATION SERVICE COMPOSITIONS 

Number of Components (n) Number of Compositions (Bn) 

3 5 

4 15 

5 52 

6 203 

7 877 

8 4,140 
 

An exponential generating function to generate Bell 
numbers is given by the formula: 

 
Performance models hold promise as a means to rapidly 

evaluate a large number of possible service compositions 
without physically deploying and testing them.  Good 
performance models should be able to predict performance 
outcomes of VM placement and service compositions to 
eliminate the need for brute force testing of the entire 
configuration space.  Collecting training data for subsets of 
the configuration space to train performance models should 
be easier than performing brute force testing of all service 
compositions.  Models should provide the ability to make 
reasonably accurate performance predictions with reasonable 
amounts of time spent collecting training data and training 
models.    

This paper presents results of an exploratory study which 
investigates building multi-tier application performance 
models using resource utilization statistics.  The utility of 
using different resource utilization statistics as independent 
variables for predicting service response time is investigated.  
Performance models of multi-tier applications deployed to 
IaaS clouds hold promise to (1) guide application component 

placement across VM images, and (2) support real-time 
virtual infrastructure management for IaaS clouds by 
predicting resource requirements for specific performance 
goals.   

The following research questions are investigated in 
support of our investigation on Infrastructure-as-a-Service 
application performance modeling: 

 

1) (Independent Variables) Which VM and PM resource 

utilization statistics are most helpful for predicting 

performance of different application service compositions? 

2) (Profiling Data) How should resource utilization 

data be treated for use in performance models?  Should VM 

profiling data from multiple VMs be combined or used 

separeatly?  

3) (Exploratory Modeling) Comparing multiple linear 

regression (MLR), multivariate adaptive regression splines 

(MARS), and an artificial neural network (ANN), which 

model techniques appear to best predict application 

performance and service composition performance ranks? 

II. RELATED WORK 

Rouk identified the challenge of creating good virtual 
machine images which compose together application 
components for migrating multi-tier client/server 
applications to IaaS clouds in [3].  Negative performance 
implications and higher hosting costs may result when ad 
hoc compositions are used resulting in potential unwanted 
contention for physical resources.   Xu et al. identify two 
classes of approaches for providing autonomic provisioning 
and management of virtual infrastructure in [17]: 
multivariate optimization (performance modeling), and 
feedback control.  Multivariate optimization approaches 
attempt to support better application performance by 
modeling the tuning of multiple system variables to predict 
the best configurations.  Feedback control approaches based 
on process control theory attempt to improve configurations 
by iteratively making changes and observing outcomes in 
real time using live systems.  Feedback control approaches 
have been built using reinforcement learning [17], support 
vector machines (SVMs) [18], ANNs [27][28], and a fitness 
function [29].  Performance models have been built using 
MLR [20], ANNs [17][19], and SVMs [18].  Hybrid 
approaches which combine the use of a performance model 
for model initialization and apply real time feedback control 
include: [17][18][27][28]. 

Multivariate optimization approaches can model far more 
configurations enabling a much larger portion of the 
exploration space of system configurations to be considered.  
Time to collect and analyze model training datasets results in 
a trade-off between model accuracy vs. availability.  
Additionally performance models trade-off accuracy vs. 
complexity.  More complex models with larger numbers of 
independent variables and data samples require more time to 
build and compute but this investment can lead to better 
model accuracy.   
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Feedback control approaches apply control system theory 
to actively tune resources to meet pre-stated service level 
agreements (SLAs).  Feedback control systems do not 
determine optimal configurations as they only consider a 
subset of all possible configurations limited by observations 
of configurations seen in real time.  Feedback control 
approaches may produce inefficient configurations, 
particularly upon system initialization.  Hybrid approaches 
combine performance modeling and feedback control to 
provide better control decisions more rapidly.  Hybrid 
systems use training datasets to initialize performance 
models to better inform control decisions immediately upon 
start-up.  Control decisions are further improved as the 
system operates and collects additional data in real time.  
Hybrid approaches often use simplified performance models 
trading off accuracy for speed of computation and 
initialization. 

Wood et al. developed Sandpiper, a black-box and gray-
box resource manager for VMs [20].  Sandpiper, a feedback 
control approach, was designed to oversee server partitioning 
and was not designed specifically for IaaS.  Sandpiper 
detects “Hotspots” when provisioned architecture fails to 
meet service demand.  Sandpiper performs only vertical 
scaling including increasing available resources to VMs, and 
VM migration to less busy PMs but does not horizontally 
scale the number of VMs for load balancing.  Sandpiper uses 
a MLR performance model to predict service time by 
considering CPU utilization, network bandwidth utilization, 
page fault rate, memory utilization, request drop rate, and 
incoming request rate as independent variables.  Xu et al. 
developed a resource learning approach for autonomic 
infrastructure management [17].  Both application agents and 
VM agents were used to monitor performance.  A 
state/action table was built to record performance quality 
changes resulting from control events.  Their resource 
learning approach only considered VM memory allocation, 
VM CPU cores, and CPU scheduler credit.  An ANN model 
was added to predict reward values to help improve 
performance upon system initialization when the state/action 
table was only sparsely populated.  Kousiouris et al. 
benchmarked all possible configurations for different task 
placements across several VMs running on a single PM [19].  
From their observations they developed both a MLR model 
and an ANN to model performance.  Their research was not 
extended to perform resource control but focused on 
performance modeling to predict the performance 
implications of task placements.  Kousiouris et al.’s approach 
used an ANN to model task performance for different VM 
configurations on a single machine.  They contrasted using a 
ANN model with a MLR model.  Model independent 
variables included:  CPU scheduling time, and location of 
tasks (same CPUs with L1 & L2 cache sharing, adjacent 
CPUs with L2 cache sharing, and non-adjacent CPUs).  
Niehorster et al. developed an autonomic resource 
provisioning system using support vector machines (SVMs) 
[18].  Their system responds to service demand changes and 
alters infrastructure configurations to enforce SLAs.  They 
performed both horizontal and vertical scaling of resources 
and dynamically configured application specific parameters.  

Niehorster et al.’s performance model primarily considered 
application specific parameters.  The only virtual 
infrastructure parameters considered in their performance 
model included # of VMs, VM memory allocation, and VM 
CPU cores.  

III. PAPER CONTRIBUTIONS 

Existing approaches using performance models to 
support autonomic infrastructure management do not 
adequately consider performance implications of where 
application components are physically hosted across VMs.  
Additionally, existing approaches do not consider disk 
utilization statistics, and only one approach has considered 
implications of network I/O throughput [20].  This paper 
extends prior work by investigating the utility of using VM 
and PM resource utilization statistics as predictors for 
performance models for applications deployed to IaaS 
clouds.  Use of application performance models can support 
determination of ideal component compositions which 
maximize performance using minimal resources to support 
autonomic multi-tier application deployment across VMs.  
These performance models can also support autonomic IaaS 
cloud virtual infrastructure management by predicting 
outcomes of potential configuration changes without 
physically testing them.  To support our investigation we 
modeled performance of two variants of a multi-tier 
scientific erosion model.  The variants serve as surrogates for 
common multi-tier applications: an application-server bound 
application and a relational database bound application.     

IV. EXPERIMENTAL INVESTIGATION 

A. Experimental Setup 

The test infrastructure used to explore multi-tier 
application migration in [26] was extended to explore our 
application performance modeling research questions 
presented in section 1.  Two variants of the Revised 
Universal Soil Loss Equation – Version 2 (RUSLE2), an 
erosion model, were deployed as a web service and tested 
using a private IaaS cloud environment.  RUSLE2 contains 
both empirical and process-based science that predicts rill 
and interrill soil erosion by rainfall and runoff [6].  RUSLE2 
was developed primarily to guide conservation planning, 
inventory erosion rates, and estimate sediment delivery and 
is the USDA-NRCS agency standard model for sheet and rill 
erosion modeling used by over 3,000 field offices across the 
United States.  RUSLE2 is a good candidate to prototype 
multi-tier application performance modeling because its 
architecture consisting of a web server, relational database, 
file server, and logging server is analogous to many typical 
multi-tier client/server based applications.   

RUSLE2 was deployed as a JAX-RS RESTful JSON-
based web service hosted by Apache Tomcat [9].    The 
Object Modeling System 3.0 (OMS 3.0) framework [7][22] 
using WINE [8] was used as middleware to support model 
integration and deployment as a web service.  OMS was 
developed by the USDA–ARS in cooperation with Colorado 
State University and supports component-oriented simulation 
model development in Java, C/C++ and FORTRAN.   
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A Eucalyptus 2.0 [10] IaaS private cloud was built and 
hosted by Colorado State University consisting of 9 SUN 
X6270 blade servers on the same chassis sharing a private  
Giga-bit VLAN with dual Intel Xeon X5560-quad core 2.8 
GHz CPUs each with 24GB ram and 146GB HDDs.  8 blade 
servers were configured as Eucalyptus node-controllers, and 
1 blade server was configured as the Eucalyptus cloud-
controller, cluster-controller, walrus server, and storage-
controller.  The cloud controller server was supported by  
Ubuntu Linux (2.6.35-22) 64-bit server 10.10, while node 
controllers which hosted VMs used CentOS Linux (2.6.18) 
64-bit server.  Eucalyptus managed mode networking was 
used to isolate experimental VMs on their own private 
VLANs.  The XEN hypervisor version 3.4.3 supported by 
QEMU version 0.8.2 was used to provide VMs [16].  
Version 3.4.3 of the hypervisor was selected after testing 
indicated it provided the best performance when compared 
with other versions of XEN (3.1, 4.0.1, and 4.1).   

To facilitate testing, ensemble runs, groups of individual 
modeling requests bundled together were used.  To invoke 
the web service a client sends a JSON object representing a 
collection of parameterized model requests with values for 
management practice, slope length, steepness, latitude, and 
longitude.  Model results are computed and returned using 
JSON object(s).  Ensemble runs are processed by dividing 
grouped modeling requests into individual requests which 
are resent to the web service, similar to the “map” function 
of MapReduce.  A configurable number of worker threads 
concurrently execute individual runs in parallel. Modeling 
results are then combined (reduced) and returned as a single 
JSON response object.  A test generation program created 
randomized ensembles.  Latitude and longitude coordinates 
were randomly selected within a bounding box from the U.S. 
state of Tennessee.  Slope length, steepness, and the 
management practice parameters were also randomized.  20 
randomly generated ensemble tests with 100 model runs 
each were used to test performance of 15 different service 
compositions.  Before executing each 100 model-run 
ensemble test, a smaller 25 model-run ensemble test was 
executed to warm up the system.  The warm up test was 
warranted after observing slow spatial query performance 
from postgresql on startup.   

A test script was used to automatically configure service 
placements and collect VM and PM resource utilization 
statistics while executing ensemble tests.  Cache clearing 
using the Linux virtual memory drop_caches function was 
used to purge all caches, dentries and inodes before each test 
was executed to negate training affects resulting from 
reusing ensemble tests.  The validity of this approach was 
verified by observing CPU, file I/O, and network I/O 
utilization statistics for the automated tests with and without 
cache clearing.  When caches were not cleared the number of 
disk sector reads dropped after the system was initially 
exposed to the test dataset.  When caches were force-cleared 
the system exhibited more disk reads confirming it was 
forced to reread data each time.  Initial experimental 
observations showed that as the number of records stored in 
the logging database increased, ensemble test performance 
declined.  To work around performance effects of the 

growing logs and to eliminate running out of disk space, the 
Codebeamer logging component was removed and 
reinstalled after each ensemble test run.  Additionally all log 
files for all application components were purged after each 
ensemble test.  These steps allowed several thousand 
ensemble tests using all of the required service compositions 
to be automatically performed without intervention.   

B. Application Components 

Table II describes the four application services 
(components) used to implement RUSLE2's application 
stack.  The Model M component hosts the model 
computation and web services using the Apache Tomcat 

application server.  The Database D component hosts the 
geospatial database which resolves latitude and longitude 
coordinates to assist in parameterizing climate, soil, and 
management data for RUSLE2.  Postgresql was used as a 
relational database and PostGIS extensions were used to 

support geospatial functionality [11] [12].  The file server F 
component was used by the RUSLE2 model to acquire XML 
files to parameterize data for model runs.  NGINX [13], a 
lightweight high performance web server provided access to 
a library of static XML files which were on average ~5KB 
each.  The logging L component provided historical tracking 
of modeling activity.  The codebeamer tracking facility 
supported by the Derby relational database was used to log 
model activity [14].  A simple JAX-RS RESTful JSON-
based web service was developed to decouple logging 
requests from the RUSLE2 service calls.  This service 
implemented an independent logging queue to prevent 
logging delays from interfering with RUSLE2 performance.  
HAProxy was used to redirect modeling requests from a 
public IP to potentially one or more backend M VMs.  
HAProxy is a dynamically configurable very fast load 
balancer which supports proxying both TCP and HTTP 
socket-based network traffic [15]. 

TABLE II.  RUSLE2 APPLICATION COMONENTS 

Component Description  

M Model 
Apache Tomcat 6.0.20, Wine 1.0.1, RUSLE2, Object 

Modeling System (OMS 3.0) 

D Database 

Postgresql-8.4, PostGIS 1.4.0-2 

Geospatial database consists of soil data (1.7 million 

shapes, 167 million points), management data (98 

shapes, 489k points), and climate data (31k shapes, 3 

million points), totaling 4.6 GB for the state of TN. 

F File server 

nginx 0.7.62  

Serves XML files which parameterize the RUSLE2 

model.  57,185 XML files consisting of 305MB. 

L Logger 

Codebeamer 5.5, Apache Tomcat (32-bit) 

Custom RESTful JSON-based logging wrapper web 

service.  Ia-32libs support operation in 64-bit 

environment. 

 

C. Tested Service Compositions 

RUSLE2’s application stack of 4 components can be 
deployed 15 possible ways across 4 physical node 
computers.  Tables III shows the 15 service compositions 
tested labeled as SC1-SC15.  To achieve each of the 
compositions a single composite VM image was created with 
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all components installed (M, D, F, L).  Four PMs were used 
to host one composite VM each.  The testing script 
automatically enabled/disabled services as needed to achieve 
all service compositions (SC1-SC15).   

TABLE III.  TESTED SERVICE COMPOSITIONS 

 VM 1 VM 2 VM 3 VM 4 

SC1 MDFL    

SC2 MDF L   

SC3 MD FL   

SC4 MD F L  

SC5 M DFL   

SC6 M DF L  

SC7 M D F L 

SC8 M D FL  

SC9 M DL F  

SC10 MF DL   

SC11 MF D L  

SC12 ML DF   

SC13 ML D F  

SC14 MDL F   

SC15 MLF D   
 

Every VM ran Ubuntu Linux 9.10 64-bit server and was 
configured with 8 virtual CPUs, 4 GB memory and 10GB of 
disk space.  Drawbacks to our scripted testing approach 
include that our composite image had to be large enough to 
host all components, and for some compositions VM disks 
contained installed but non-running components.  These 
drawbacks are not expected to be significantly relevant to 
performance. 

D. Resource Utilization Statistics 

Table IV describes the 18 resource utilization statistics 
collected using an automated profiling script.  The profiling 

script parsed the Linux operating system /proc/stat, 

/proc/diskstats, /proc/net/dev and 

/proc/loadavg files.  Initial resource utilization statistics 
were captured before execution of each ensemble test.  After 
ensemble tests completed resource utilization statistics were 
captured and deltas calculated representing the resources 
expended throughout the duration of the ensemble test’s 
execution.  This data was recorded to a series of output files 
and uploaded to the dedicated blade server performing the 
testing.  The same resource utilization statistics were 
captured for both VMs and PMs, but 8 statistics were found 
to have a negligible value for PMs.  Resource utilization 
statistics collected for PMs are designated with “P”, and for 
VMs with “V” in the table.  Some statistics collected are 
likely redundant in that they are different representations of 
the same system properties.  Subtleties in how related 
statistics are collected and expressed may provide 
performance modeling benefits and were captured for 
completeness is this study. 

Performance models were built to predict ensemble 
execution time for different service compositions of 
RUSLE2.  Using estimated average ensemble execution 
times for service composition rank predictions were made.  

Accurate performance rank predictions can be used to 
identify ideal compositions of components to support 
autonomic component deployment.   

TABLE IV.  RESOURCE UTILIZATION STATISTICS 

Statistic Description  

P/V CPU time CPU time in ms 

P/V cpu usr CPU time in user mode in ms 

P/V cpu krn CPU time in kernel mode in ms 

P/V cpu_idle CPU idle time in ms 

P/V contextsw Number of context switches 

P/V cpu_io_wait CPU time waiting for I/O to complete 

P/V cpu_sint_time CPU time servicing soft interrupts 

V dsr Disk sector reads (1 sector = 512 bytes) 

V dsreads Number of completed disk reads 

V drm Number of adjacent disk reads merged 

V readtime Time in ms spent reading from disk 

V dsw Disk sector writes (1 sector = 512 bytes) 

V dswrites Number of completed disk writes 

V dwm Number of adjacent disk writes merged 

V writetime Time in ms spent writing to disk 

P/V nbr Network bytes sent 

P/V nbs Network bytes received 

P/V loadavg Avg # of running processes in last 60 sec 

 

E. Application Variants 

Our investigation tested two variants of RUSLE2 which 

we refer to herein as the “d-bound” for the database bound 

and the “m-bound” for the model bound application.  By 

testing two variants of RUSLE2 we hoped to gain insight 

into performance modeling by using two versions of 

RUSLE2 with different resource utilization profiles.  For the 

d-bound RUSLE2, two primary geospatial queries were 

modified to perform a join on a nested query (as opposed to 

a table).  The m-bound RUSLE2’s geospatial queries used 
the ordinary table joins.  The SC1 “d-bound” deployment 

required on average 104% more cputime and 17,962% more 

disk sector reads (dsr) than the “m-bound” model.   This 

modification significantly increased database cputime and 

disk reads.  Average ensemble execution time for all service 

compositions was approximately ~29.3 seconds for the m-

bound model, and 4.7x greater at ~137.2 seconds for the d-

bound model. 

V. EXPERIMENTAL RESULTS 

Table V summarizes tests completed for this study 

totaling approximately 300,000 model runs in 3,000 

ensemble tests. The effectiveness of using our resource 
utilization statistics as model independent variables to 

predict service composition ensemble test performance 

(RQ1) are presented in section 5.1.   Section 5.2 discusses 

experimental results which investigate how to best compose 

resource utilization statistics for use in performance models 

(RQ2).  Section 5.3 concludes by presenting results of 

performance model effectiveness for predicting ensemble 
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execution time and service composition performance ranks 

for different application component compositions (RQ3). 

TABLE V.  SUMMARY OF TESTS 

Model Trials 
Ensembles 

/Trial 

Service 

Comps. 

Model 

Runs 

Ens. 

Runs 

d-bound 2 20 15 60k 600 

m-bound 3 20 15 90k 900 

m-bound 1 100 15 150k 1,500 

Totals 6   300,000 3,000 
 

A.  Independent Variables 

This study investigated the utility of 18 resource 

utilization statistics describing CPU utilization, disk I/O, 

and network I/O of both VMs and PMs for performance 

modeling as described in table IV.  To investigate the 

predictive strength of each independent variable we 
performed separate linear regressions for each independent 

variable to predict ensemble execution time.  R2 is a 

measure of model quality which describes the percentage of 

variance explained by the model’s independent variable.   

Adjusted R2 is reported as opposed to multiple R2 because 

this measure is more conservative as it includes an 

adjustment which takes into account the number of 

predictors in the model [23].  Statistics reported in table VI 

used 20 ensemble runs each for the 15 service compositions 

for both the “m-bound” and “d-bound” models.  Untested 

statistics are indicated by “n/a”.  In these cases resource 
utilization was typically zero.  Total resource utilization 

statistics were calculated by totaling values from VMs and 

PMs used in the service compositions.   

CPU time is shown to predict the most variance for both 

models.  Large differences in R2 for “d-bound” compared to 

“m-bound” are shown in bold.  For the “d-bound” model dsr 

and dsreads were less useful predictors, while contextsw and 

cpu_idle were shown to be better predictors.   PM resource 

utilization statistics were generally found to be less useful as 

indicated by total R2 values.  No single PM statistic for the 

“m-bound” model achieved better than R2=.086, while PM 

statistics for the “d-bound” model appeared better but not 
great with nbs as the strongest predictor at R2=.3385.   

    Besides having strong R2 values, good predictor variables 

for use in MLRs should have normally distributed data.  To 

test normality of our resource utilization statistics the 

Shapiro-Wilk normality test was used [24].  100 ensemble 

runs were made for each of the 15 service compositions for 

the “m-bound” model.  Combining service composition data 

together was shown to decrease normality.  Normality tests 

showed an average of 9 resource utilization statistics had 

normal distributions for individual compositions.  When 

data for compositions was combined only loadavg, 
cpu_sint_time, and cpu_krn had strong normal distributions 

for the “m-bound” model and loadavg, cputime, cpu_usr, 

and cpu_krn for the “d-bound” model.  Ensemble time 

appeared to be normally distributed for both applications, 

but appeared more strongly normally distributed for “d-

bound”.  Histogram plots for cputime and dsr are shown in 

figure 1.  Cputime and other related cputime statistics 

(cpu_usr, cpu_krn) were among the strongest predictors of 

ensemble execution time for both models.  Dsr was a better 

predictor for “m-bound” and its distribution appears more 

normal than for “d-bound”.  The plots visually confirm 
results of the Shapiro-Wilk normality tests.  

TABLE VI.  INDEPENDENT VARIABLE STRENGTH 

Statistic Adjusted R
2
 “m-bound” Adjusted R

2
 “d-bound” 

 VM PM VM PM 

CPU time 0.7162 -0.0033 0.5096 0.1406 

cpu usr 0.7006 -0.0019 0.444 0.04437 

dsr 0.3693 n/a 0.02613 n/a 

dsreads 0.3129 n/a 0.02606 n/a 

cpu krn 0.1814 n/a 0.2958 0.2221 

dswrites 0.1705 n/a 0.1151 n/a 

dsw 0.1412 n/a 0.02292 n/a 

dwm 0.1374 n/a 0.01528 n/a 

contextsw 0.0618 -0.001 0.4592 0.1775 

cpu_io_wait 0.0514 0.086 0.02528 0.05718 

writetime 0.0451 n/a -0.001199 n/a 

loadavg 0.0168 0.0132 0.04321 0.004962 

cpu_sint_time 0.0112 0.0141 0.02251 0.00003713 

readtime 0.0094 n/a 0.02753 n/a 

nbs 0.0042 0.0039 0.01852 0.3385 

nbr 0.0041 n/a 0.01858 0.3368 

cpu_idle 0.004 -0.0001 0.2468 0.2542 

drm 0.0005 n/a 0.0261 n/a 

Total R
2
 2.938 0.1109 2.341 1.576 

 

 

   
Figure 1.  Cputime and Disk Sector Read Distribution Plots 

B. Treatment of Resource Utilization Data 

The RUSLE2 application’s 4 components (M, D, F, L) 
were distributed across 1 to 4 VMs.  Resource utilization 
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statistics were collected at the VM and PM level.  Two 
treatments of the data are possible.  Resource utilization 
statistics can be combined for all VMs and used to model 

performance: RUdata=RUM+RUD+RUF+RUL, or only 
resource utilization statistics for the VM hosting a particular 
component can be used to model performance: 

RUdata={RUM; RUD; RUF;  RUL;} To test the utility of both 
data handling approaches 10 MLR models were generated.  
A separate training and test data set were collected using 20 
ensemble runs for each of the 15 service compositions for 
both the “m-bound” and “d-bound” RUSLE2.  Results of the 
MLR models are summarized in table VII. 

TABLE VII.  MULTIPLE LINEAR REGRESSION PERFORMANCE MODELS 

Model Data Adj. R
2
 RMStrain RMStest Avg. Rank Error 

d-bound RUM .9982 642.78 967.35 .13 

d-bound RUD  .9983 622.24 1248.24 .4  

d-bound RUF  .9984 615.64 606.94 .27 

d-bound RUL .9983 621.99 978.92 .4 

d-bound RUMDFL .9107 4532.85 44903.96 1.73 

m-bound RUM .8733 576.05 759.36 1.47 

m-bound RUD .67 929.54 971.85 2.13 

m-bound RUF .7833 775.70 866.18 2 

m-bound RUL .6247 991.29 42570.5 2.4 

m-bound RUMDFL .8546 616.98 807.34 1.2 
 

For the models described in table VII VM data (not PM) 
for all 18 independent variables was used.  Adjusted R2 
values describe the variance explained by the models. The 
root mean squared error (RMS) expresses the differences 
between the predicted and observed values and serves to 
provide a measure of model accuracy.  A statistically 
significant model (p<.05) will predict 95% of ensemble 
execution times with less than +/- 2 RMS error from the 
actual values [25].  RMStrain describes error at predicting 
ensemble times for the training dataset and RMStest describes 
error at predicting ensemble times using the test dataset.  For 
each of the service compositions an average estimate for 
ensemble execution time was calculated.  The estimated 
average ensemble execution time was used to generate 
performance rank predictions for each of the 15 service 
compositions.  The average rank error is the average error of 
actual vs. predicted ranks. 

Analysis of model results shows that for the “d-bound” 
performance model, CPU idle time from individual VMs is 
an excellent predictor of ensemble execution time.  R2 for 
cpu_idle_time for the M, D, F, L models is .7716, .7844, 
.6041, and .4223 respectively but only .2468 when 
combining VM statistics.  This is in contrast to .0223, -.0024, 
.0271, .1199 and combined .0039 for the “m-bound” model.  
Further analysis reveals that the “d-bound” model makes 
93.6x more disk sector reads than “m-bound” but only 
requires 2x as much CPU time while having 5.1x more idle 
CPU time.  The “d-bound” model waits while this I/O is 
occurring making CPU idle time an excellent predictor for 
ensemble execution time for the “d-bound” application.  The 
number of context switches for the busiest component seems 
to be a good predictor with D for “d-bound” at R2=.4619 and 

M for the “m-bound” at R2=.4786.  The strength of using the 
number of context switches as a predictor of other VMs was 
less significant.   

C. Performance Models 

Combined resource utilization statistics (RUMDFL) were 
used as training data for 4 modeling approaches: MLR, 
stepwise multiple linear regression (MLR-step), MARS, and 
a simple single hidden layer ANN [24].  We investigated 
both MLR and stepwise MLR.  MLR models use every 
independent variable provided to predict the dependent 
variable.  Stepwise MLR begins by modeling the dependent 
variable using the complete set of independent variables but 
after each step adds or drops predictors based on their 
significance to test various combinations until the best model 
is found which explains the most variance (R2).  MARS is an 
adaptive extension of MLR which works by splitting 
independent variables into multiple basis functions and then 
fits a linear regression model to those basis functions [24].  
Basis functions used by MARS are piecewise linear 
functions in the form of: f(x)={x-t if x>t, 0 otherwise} and 
g(x)=(t-x if x<t, 0 otherwise}.  Both stepwise MLR and 
MARS were chosen because they generally provide some 
small improvement over traditional MLR and were easy to 
implement in R.  ANNs are a very popular statistical 
modeling technique which excels at handling complex 
nonlinear relationships in the data. We tested single hidden 
layer ANN models supported by the R statistical software 
package [24] to predict ensemble execution times.  R’s 
ANNs use the sigmoid function, a bounded logistic function 
used to introduce nonlinearity in the model.  A summary of 
performance models for the “m-bound” and “d-bound” 
application are shown in table VIII. 

TABLE VIII.  PERFORMANCE MODELS 

Model Type Adj. R
2
 RMStrain RMStest Avg. Rank Error 

d-bound MLR .9107 4532.85 44903.96 1.73 

d-bound MLR-step .9118 4589.27 43918.55 1.73 

d-bound MARS  .9180 4472.32 45137.28 1.33 

d-bound ANN n/a 4440.03 44094.03 1.6 

m-bound MLR .8546 616.98 807.34 1.2 

m-bound MLR-step .8571 621.41 799.22 1.33 

m-bound MARS .8718 596.45 825.34 1.86 

m-bound ANN n/a 595.49 800.71 1.73 
 

R2 values were not available for the ANN.  For both 
applications, the ANN provided the lowest RMS error for the 
training dataset but slightly higher RMS error for the test 
dataset compared with stepwise MLR.  For the 8 models 
RMStrain and RMStest values correlated strongly (R2=.999, 
p=2.4•10-10, df=6) suggesting that where a model performs 
well on training data it will likely perform well on test data.  
There was no relationships between rank error and RMStest 
(R2=.02064, p=.734, df=6) suggesting that low error for 
ensemble time predictions does not guarantee low rank error.  
All of the models had some error at predicting service 
composition rank but provided functional predictions as they 
easily differentiated fast vs. slow service compositions and 
accurately determined the top 2 or 3 compositions.   
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VI. CONCLUSIONS 

Modeling performance of service compositions of multi-
tier applications deployed to IaaS clouds can help guide 
component composition for application deployments aiming 
to provide best performance with minimal virtual resources.  
Results of our exploratory investigation on performance 
modeling using resource utilization statistics for two variants 
of a multi-tier application include:  

(RQ1) CPU time and other CPU related statistics were 
the strongest predictors of execution time, while disk and 
network I/O statistics were less useful.  Measured disk and 
network I/O utilization statistics for our study suffered from 
non-normality and large variance when data from multiple 
service compositions were combined together for modeling 
purposes.  CPU idle time and number of context switches 
were good predictors of execution time when the 
application’s performance was I/O bound.  Disk I/O statistics 
were better predictors when the application was more CPU 
bound.   

(RQ2) The best treatment of resource utilization statistics 
for performance modeling, either combining data or using 
VM data separately, to achieve best model accuracy was 
dependent on each application’s resource utilization profile. 

(RQ3) Advanced modeling techniques such as MARS 
and ANN provided lower RMSerror for training and test data 
sets than MLR but overall all of the modeling approaches 
tested had similarly performance at minimizing RMSerror.  
Additionally all models determined the best 2 or 3 service 
compositions confirming the value of our performance 
modeling approach for determining ideal component 
compositions to support IaaS cloud multi-tier application 
deployment.   
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