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Abstract—Clouds have become ubiquitous and several data 

processing tasks have migrated to these settings. The dominant 

approach in cloud settings is to provision virtual machines (VMs) 

rather than provision direct access to the physical machine. One 

artifact of such provisioning is that multiple VMs may be 

collocated on the same physical machine and possibly interfere 

with each other. In this paper, we focus on the impact of 

virtualized infrastructures on realtime stream processing; we use 

the classification of electrocardiograms (ECG) as a motivating 

example. Stream processing in such a setting strains resources 

differently than the traditional web services or analytics on large 

datasets traditionally performed in the cloud.  In streaming 

environments all processing per packet needs to be completed in 

a timely manner, and the number and rate at which these packets 

are generated is high. Our focus is to study the implications of 

various combinations of virtualization strategies on the 

performance of realtime stream processing. We have done 

extensive performance benchmarks (using Xen and KVM) the 

results of which form the basis for our recommendations for the 

trade-offs involved in these settings. 

Keywords-classification, health streams, Granules, Xen, KVM, 

virtualization, stream processing. 

I.  INTRODUCTION 

Health sensors are becoming pervasive as devices become 
smaller and cheaper.  These devices are invaluable in allowing 
people to keep out of hospitals and maintain their normal 
lifestyle when illnesses or age would previously have mandated 
a regulated living environment.  In such a situation, a user 
would have multiple sensors constantly generating information 
about their well-being.  Such sensors may include monitors for 
ECG, EEG, blood pressure, and even gyroscopes to determine 
user orientation.  In the past we have worked with classifying 
EEG streams generated by electrodes placed on a person’s 
scalp to allow them to interact with their environment [1].  
Here we focus on classifying ECG data, determining if an 
abnormal heartbeat has occurred. 

To keep up with the expected growth of health sensors we 
explore the capabilities of virtual machines in the context of 
stream processing.  By moving from a standalone solution to a 
cloud of virtual machines we not only increase the amount of 
simultaneous users we are able to support, but we also are able 
to take advantage of data aggregation that has the potential to 
improve the accuracy of the inference algorithms operating on 

such data.  Instead of only being able to build algorithms which 
monitor user health from a small pool of people, these 
algorithms could learn from thousands of users across a wide 
geographic region – possibly finding connections that lead to 
breakthroughs in the diagnosis of medical problems.  

In this work our focus is to determine the suitability of 
virtualized machines when working with streaming data while 
placing time constraints on processing.  Processing such 
streaming data tends to strain resources differently from static 
settings: packeets arrive continuously with processing being 
performed for milliseconds per packet by memory-resident 
computations that are activated when data arrives.  When 
anomalous events are detected, packets from the near past are 
written to disk for further study.  For these experiments, we 
work with both Xen [2] and kernel virtual machine (KVM) [3] 
hypervisors.  We are using a classifier to detect anomalous 
heartbeats among streaming ECG data.  The goal is to return a 
classification in real-time (e.g. before the next second of ECG 
data is passed to the classifier).  Our experiments analyze 
performance across both dedicated machines and virtualized 
resources.  As cloud computing becomes ever more pervasive, 
it is important to analyze the capabilities of various virtual 
environments for processing this class of data in real-time. 

We use the MIT-BIH arrhythmia dataset [4], which has 
been used to train specialists to detect various types of 
arrhythmias.  Our computation consists of an R-based classifier 
which determines whether a segment of ECG data contains an 
abnormal heartbeat or not.  An ECG signal comprises the 
PQRST wave constructed from electrical activity reported by 
electrodes placed on the chest.  Each complete wave represents 
a heartbeat.  This is distinct (though related) from the heartbeat 
heard using a stethoscope.  If a heartbeat is flagged as 
abnormal, the proceeding and following heartbeats should be 
stored to disk for further analysis.   

For our communications substrate, we use the Granules [5, 
6] stream processing framework.  Granules runs as a daemon 
on a resource and can interleave multiple computations on the 
same resource.  The framework allows us to host low-overhead 
computations that only activate when data is available on the 
streams that they consume.  The Granules framework also 
incorporates the ability to use code written in different 
languages as computations – namely our R-based classifiers. 
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Our experiments with virtualization involve both fully 
virtualized and paravirtualized resources.  Full virtualization 
hypervisors run guest operating systems without any code 
modification by creating virtual interfaces for all hardware 
needs.  While this means less up-front work to achieve a 
running virtual machine (VM) instance, it also leads to a 
potential slowdown in accessing and utilizing resources such as 
RAM, CPU, and disk and network I/O.  Paravirtualization 
requires some operating system modification, but offers 
performance near that of the physical machine.  In our 
experiments we look at KVM, which only runs in a fully 
virtualized mode, as well as Xen, which has both full- and 
para-virtualized modes. 

Virtual machines are typically thought of as resources to 
allow web services to scale as needed.  They have also been 
used in conjunction with Hadoop [7] for large MapReduce [8] 
operations when a user does not have enough resources to 
perform the operation locally.  While web applications 
typically require very fast response times, they do not usually 
require a large amount of processing on the back end.  
Alternatively, MapReduce applications tend to require a large 
amount of processing, yet have no bounding time requirements.  
Our application requires both a timely response and a large 
amount of processing.  Each packet requires processing in the 
order of milliseconds, but there may be millions of packets 
coming in to a single machine.  In this respect, we are pushing 
these hypervisors to their limits in our experiments. 

A. Paper Contributions 

To the best of our knowledge, this paper represents a first 
exploration of the performance of various hypervisors in a 
stream processing context. Stream processing requires the 
quick and efficient processing of relatively small computations 
at a very large scale.  In a stream processing environment it is 
necessary to process data at a rate no worse than the rate at 
which data is being generated.  If data is regularly processed 
too slowly, incoming buffers will eventually fill and then 
overflow: causing a loss of irreplaceable data.  Because of this, 
we need to ensure the reliable and timely completion of all 
processing.  A major goal of this work is to develop 
recommendations for hypervisor choice for supporting stream 
processing. 

  We gather data about hypervisor behavior not only in an 
idealized situation, but also under heavy loads.  As we outlined 
earlier, the computations stress several capabilities available at 
a resource.  By running these stress tests we get to isolate the 
minimum requirements of the hypervisors themselves, as well 
as determine how performance deteriorates in the face of 
interference. 

In a virtualized environment, interference from collocated 
machines is a given.  In most situations, users have no control 
or knowledge of what other computations are currently running 
on the same physical machine.  When multiple computations 
that share similar resource requirements are placed on the same 
physical machine, performance of all VMs on the machine may 
be negatively affected.  By understanding how quickly this 
falloff in performance occurs, we can develop methods to 
detect and recover from such performance problems. 

B. Paper Structure 

The rest of this paper is organized as follows; Section II 
discusses the technologies used here as well as related work, 
while Section III describes our experimental approach and 
introduces the dataset we use in our experiments.  In Section IV 
we work through several baseline experiments, then scale up to 
stress tests in Section V.  We then discuss our conclusions and 
future work in Section VI. 

II. BACKGROUND AND RELATED WORK 

Granules [5, 6] is a stream processing framework which 
allows processes to enter a dormant state between rounds of 
execution.  Granules further allows computations to build and 
maintain state over time.  Because of these features, Granules is 
particularly suitable for sensor processing and has been 
deployed in domains such as EEG classification [1], epidemic 
modeling using discrete event simulations, and handwriting 
recognition [9]. 

Xen [2] was developed as an attempt to leverage the 
benefits of virtualization without needing special hardware and 
minimizing the changes to existing operating system code.  
Xen supports both full virtualization and paravirtualization 
modes, meaning Xen can be run with full virtualization on 
hardware that does not support paravirtualization.  To allow 
operating system code to run with minimal modifications, the 
Xen host OS implements strong resource isolation which 
creates the illusion that each guest OS is running on a bare 
machine.  Xen can support both Linux and Windows guests, 
provided an altered operating system kernel is made available. 

KVM [3] is a fully virtualized solution to virtual machine 
provisioning.  It is built into the Linux kernel, and does not 
require any special hardware – this makes it a simple and 
effective solution to virtualization, particularly in a Linux 
environment.  One weakness of KVM is in how it handles I/O 
operations.  Since it is fully virtualized, virtual machines 
(VMs) do not have direct access to I/O interfaces and need to 
make calls out to the host OS in order to read and write from 
network and disk interfaces, leading to a high overhead for 
these types of operations. 

While other works [10, 11] have performed various 
benchmarks with both Xen and KVM implementations, it has 
been several years since comprehensive benchmarks were last 
performed, on Xen 3.1 and KVM-60 in [10]  and Xen 3.2.1 and 
KVM-83 for [11].  Furthermore, these benchmarks were 
designed to explore generic OS functionality, and do not reflect 
the requirements inherent in stream processing.  Stream 
processing differs from generic processing in several ways.  
Most notably are the strict turn-around times required for 
stream processing: if we cannot process streaming data at least 
as quickly as it is being generated we risk losing vital 
information as buffers overflow. 

Eucalyptus [12] is an Infrastructure as a Service (IaaS) 
provider, and essentially manages groups of VMs hosted across 
a physical cluster.  It operates on a higher level than the Xen 
and KVM hypervisors, and will handle the scheduling of jobs 
across a pool of VMs.  In this work we focus on exploring the 
pros and cons of various hypervisors in the context of 
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distributed stream processing, so Eucalyptus is outside the 
scope of our work. 

Hadoop [7] is an open source implementation of 
MapReduce [8], and often the defacto standard for cloud 
processing benchmarks.  Hadoop is not, however, designed to 
handle streaming data and instead is designed to perform 
distributed computations on a large amount of data stored on 
disk in the form of files staged using the Hadoop Distributed 
File System (HDFS) [13].  Instead, we are using Granules, 
which has been designed expressly for performing arbitrary 
computations on streaming data. 

Works exploring virtual machines in the context of stream 
processing systems have focused on the specific problem of 
more efficiently sharing communications between collocated 
VMs [14, 15].  These works assume a set hypervisor and 
developed patches which help to speed up processing in certain 
situations.  KVM and Xen guest performance is neither directly 
compared nor explored.  These expansions have since been 
incorporated into their respective code bases. 

The MIT-BIH arrhythmia dataset has been used primarily 
as a dataset in the area of machine learning [16-18].  Our work 
moves in a different direction as the goal of this paper is not to 
develop a highly trained ECG classifier, but instead explore the 
behavior of VMs under different hypervisors in a streaming 
environment.  While we use our own trained neural networks 
for ECG classification, Granules can schedule the processing of 
arbitrary computations in a stream pipeline.  There is nothing to 
preclude the incorporation of a more rigorously trained and 
tested classification system into our pipeline.  A different 
classifier would potentially involve a different processing 
footprint, yet another ANN such as that described in [16] 
would have an identical processing footprint as our approach 
proposed here. 

III. EXPERIMENTAL APPROACH 

For our experiments we use quad-core machines with 12GB 
RAM and 50GB disk space.  Each core is capable of 
hyperthreading, so we effectively have 8 cores available on 
each machine.  For the virtualized machines, each is given 
2.5GB RAM, 8GB of disk space, and 2 cores. 

For both hosts and guest operating systems, we are using 
Fedora 16 (Verne).  For Xen experiments we use Xen 3.4.2, 
and for KVM we are using the version bundled with kernel 
3.1.0.  When configuring Granules resources, we are allocating 
the JVM 2 GB RAM and 2 threads for the VM runs, and 8 GB 
RAM with 8 threads for the pure physical machine runs – 
effectively four times the resources available to a single VM. 

A. Dataset 

The MIT-BIH data set [4] is currently hosted by PhysioNet 
[19].  This dataset has been accumulated from 1975-79, and is 
the arrhythmia dataset used to train doctors to recognize 
various arrhythmias.   The data is gathered at a sampling rate of 
360Hz from a pair of sensors.  All patients had an upper and 
lower lead sensor.  The upper sensor is better at detecting the 
full QRS complex, while the lower sensors are useful for the 
detection of ectopic beats. 

This dataset contains an annotation for each heartbeat, 
marking each beat as normal, abnormal (in which case the 
exact type is noted), or a decrease in signal quality which 
makes classification difficult.  We are specifically interested in 
classifying each beat as either normal or abnormal, allowing us 
to isolate abnormal beats and store them to disk for further 
analysis. 

Our ECG processing computation has 2 parts: First, we use 
a windowing mechanism to store the last 10 seconds of ECG 
signals in raw data format.  Second, the raw data for each 
heartbeat is passed to an Artifical Neural Network (ANN) [20] 
for classification.  Our neural network contains a single hidden 
layer and that contains 10 hidden units.  We perform training 
offline, and then load a trained neural network into a 
computation when we are ready to run classification tests.  The 
neural network is trained to classify one second bursts of ECG 
data as either normal or abnormal. 

  Should the last heartbeat be abnormal, the stored 10 
second window of ECG data is written to disk.  Every 
incoming beat is then stored on disk until 10 seconds have 
passed without any abnormal beats.  This approach allows us to 
store ‘interesting’ data to disk, allowing a healthcare 
professional to later analyze data leading up to a potential 
abnormal heartbeat, as well as any immediately following data 
– allowing the arrhythmia to be viewed in context. 

It is particularly important to store data from the 
perspective of a health sensor monitoring system as data may 
be used at a later date to assess new diagnoses.  These snippets 
of interesting data can also be used as a new training set for 
machine learning approaches; for example, a classifier based 
on support vector machines (SVMs) [21] could be devised.  
Correctly classified abnormal data gives us specific windows of 
interest – possibly allowing our algorithms to learn patterns 
which lead up to various arrhythmias.  Even if the data was 
misclassified and normal heartbeats are saved, it becomes 
useful for future rounds of training as that particular portion of 
data was obviously difficult for the current classifier to 
correctly classify.  While there is an argument to storing all 
data – as it all may be useful for doctor analysis and the 
training of future classifiers – it is simply infeasible to assume 
that all data can be stored since the storage requirements will 
quickly outpace available disk capacity. 

IV. BASELINE EXPERIMENTS 

For our baseline experiments, we work with three physical 
machines.  One machine has a base Fedora 16 install, one is a 
KVM host, and the third is a Xen host.  Each host (both Xen 
and KVM) manages 4 guest operating systems with minimal 
Fedora 16 installs.  For all tests, the JVM is configured to use 
up to 2GB of RAM and run two threads.  This means that the 
JVM has the exact same resources as on each VM, giving us a 
more fair comparison of overheads. 

First, we need to determine the baseline performance of a 
single monitoring computation on the base physical machine 
well as a single guest VM in both KVM and Xen.  We first 
looked at the computation processing times, the results of 
which are displayed below in TABLE I.  This benchmark 
encompasses the amount of time spent after receiving a 
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message, before a response is generated and sent back to the 
user, but not the amount of time required to interpret the 
message to determine whether it is incoming data or an internal 
communication (notices of machine failure, state passing 
between replicas, etc.). 

TABLE I.  COMPUTATION PROCESSING TIMES FOR A SINGLE 

MONITOR(IN MS) 

Approach Mean Min Max SD 

Base 304.71 228.66 529.75 45.704 

KVM 333.11 248.06 577.35 49.612 

Xen PV 317.05 224.92 584.45 48.14 

Xen FV 340.75 250.54 585.14 51.950 

From these results, we see a best case performance in the 
case of the base install – this is expected since it is running on 
the physical machine.  There is no hypervisor introducing 
overheads by doling out resource accesses.   While the 
paravirtualized Xen (Xen PV hereafter) is generally 
outperforming KVM, it does have a worse maximum runtime.  
The fully virtualized Xen (Xen FV hereafter) is simply 
performing poorly across the board. 

The amount of time interpreting the message, as well as the 
communications overheads are the difference between the 
round-trip communications times which are displayed below in 
TABLE II. and the computation processing time displayed 
above in TABLE I.  

The paravirtualized Xen again performs closest to the 
baseline physical machine, followed by KVM and the full 
virtualization Xen instance.  While Xen with full virtualization 
had a worse mean and minimum communications time, it also 
had a lower maximum and standard deviation than KVM.  The 
previous results show that KVM can perform better for the 
CPU intensive processing, but here we see that even the full 
virtualization Xen has more reliable performance once we take 
into account networking-based operations. 

TABLE II.  ROUND TRIP COMMUNICATIONS FOR A SINGLE MONITOR (IN 

MILLISECONDS) 

Approach Mean Min Max SD 

Base 349.54 272.80 716.58 48.097 

KVM 379.11 292.88 774.31 52.139 

Xen PV 361.65 269.83 607.82 47.86 

Xen FV 385.39 294.83 629.80 51.998 

For this round of experiments, we enabled disk writes, 
meaning that the computation will store any inputs flagged as 
abnormal to disk.  This part of the experiment stresses short, 
repeated writes to disk, the results of which can be seen in 
TABLE III.  Here both the para- and full virtualization Xen 
approaches outperformed KVM, even achieving a lower mean 
than the base Fedora install.  The Xen hypervisor is obviously 
doing a better job of streamlining writes to disk than KVM.  
Given KVMs added overheads for I/O operations, we expected 
to see this behavior.  

These tests reinforced the original expectation that Xen 
performs best in situations with many writes and networking 
requirements.  We also saw that Xen does not perform as well 
for CPU bound operations.  One reason why we may be seeing 
this is that the Xen hypervisor is simply more strict in ensuring 

isolation between VMs.  For these tests, only one VM was 
running, while the other 3 were simply idling.  It is possible 
that KVM is allowing the one running VM to monopolize the 
processor, while Xen enforces a stricter scheduling policy, 
meaning it can’t take advantage of spare cycles when other 
VMs are idling. 

TABLE III.  SHORT WRITE TIMES FOR A SINGLE MONITOR (IN 

MILLISECONDS) 

Approach Mean Min Max SD 

Base 1.55 0.88 16.16 1.372 

KVM 3.23 1.94 23.67 3.06 

Xen PV 1.24 0.90 16.35 1.035 

Xen FV 1.52 0.91 20.75 1.861 

A. Single Physical Machine Stress Tests 

After analyzing the footprint of a single monitoring 
computation, we moved on to determine the maximum number 
of monitors we could support on a single physical machine (no 
virtualization), as well as the number supportable on a single 
VM (both in KVM and Xen).  Knowing the limits of the single 
physical machine gives us a guideline as we scale up to using 
all 4 VMs on a single physical machine. 

TABLE IV.  RESPONSE TIMES (IN MILLISECONDS) FOR A SINGLE PM 

Monitors Mean Min Max SD %Failure 

12 822.22 348.01 1819.22 174.798 14.46 

10 689.91 313.87 1490.86 129.312 2.04 

9 621.16 333.77 1246.17 107.659 0.47 

8 545.97 310.18 1088.39 83.260 0.13 

We ran several tests with 12, 10, 9, and 8 concurrent 
monitors running on a single machine.  For these tests we 
configured the JVM to use 8 threads and allowed it a maximum 
of 8GB of RAM.  We chose these settings as they are four 
times what one of our VMs are configured to handle. 

TABLE IV.  shows the round-trip response times for 
monitors on a single physical machine.  A message is deemed a 
failure if it takes longer than one second (1000 ms) to return to 
the user.  At first, the failure rate drops rapidly as we move 
from 12 to 10 concurrent ECG monitoring computations, with 
limited returns as we reduce the number of concurrent monitors 
to eight. 

To investigate this further, we looked at the probability 
distribution of our round-trip results.  From Figure 1. we can 
see that as we reduce the number of ECG monitors, we are not 
only slowly shifting our average response to the left (quicker 
responses), we are also lowering the standard deviation 
dramatically (narrower peaks).  Looking back at TABLE IV. 
we can corroborate the steady decrease in both standard 
deviation and mean runtime as we move from 12 to 8 monitors. 

Based on these results from a physical machine, we know 
that a solution involving VMs should aim to support about 8 
concurrent monitors (in total).  While we expect decreased 
performance as we move to VMs, we still hope to maintain a 
less than one percent failure rate. 
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Figure 1.  Density of response times for 8, 9, 10, and 12 concurrent monitors 

on a single physical machine. 

B. Single Virtual Machine Stress Tests 

For these experiments, we focus on stress testing a single 
virtual machine.  Unless otherwise noted, the other 3 VMs on 
the same physical machine are simply idling - they have been 
provisioned and are running, but no computations are occurring 
on them. 

First, we tried supporting three concurrent monitors in a 
single VM.  While this is probably not sustainable as we move 
up to using all VMs on the physical machine, as the base install 
physical machine could not support 12 concurrent users, it is 
worthwhile to determine how our setup behaves when 
overloaded.  These results can be seen below in TABLE V.  

TABLE V.  RESPONSE TIMES (IN MILLISECONDS) FOR A SINGLE VM WITH 

3 MONITORS 

Approach Mean Min Max SD %Failure 

KVM 558.77 284.25 1143.98 147.586 0.78 

Xen PV 596.28 273.90 1478.85 183.12 3.81 

Xen PV (paused) 552.70 295.27 1290.84 148.610 1.35 

Xen PV 

(shutdown) 
540.00 263.28 1510.87 145.86 1.17 

Xen FV 553.66 291.88 1413.83 152.503 1.62 

Xen FV (paused) 543.01 279.36 1302.60 144.56 1.22 

Xen FV 

(shutdown) 
524.23 282.30 1173.89 130.833 0.66 

In this experiment, we were expecting to see Xen PV 
outperforming KVM, since Xen offers paravirtualization 
support instead of the fully virtualized KVM.  While we do see 
that Xen with paravirtualization has a lower minimum runtime, 
the mean, maximum, standard deviation, and failure rate are 
higher with Xen PV than KVM.  One theory is that the Xen 
hypervisor is again attempting to be too fair in scheduling, and 
is restricting the CPU usage (our bottleneck) of the single VM 
which is performing computations in order to give the other 
VMs (which are idling) a chance to submit data for processing.  
The KVM hypervisor, on the other hand, seems to be much 

more willing to allow the single running VM to monopolize the 
queue. 

 
Figure 2.  Density of response times for 3 users on a single Virtual Machine 

hosted by KVM, Xen with full virtualization, and Xen with paravirtualization 

Of interest in these results is the fact that the full 
virtualization Xen install is actually outperforming the 
paravirtualized version.  From the results in TABLE V. it’s not 
entirely clear why this is happening.  By looking at the density 
of the response times in Figure 2. we can get more insight into 
this behavior. All implementations appear to have an almost 
bimodal distribution, which can skew our mean and standard 
deviation calculations.  From the figure, the paravirtualized 
Xen guest is actually returning results most often just below the 
500ms mark, clearly outperforming the KVM implementation 
with results very near the Xen guest with full virtualization. 

As we discussed previously, one possibility as to why 
KVM can outperform Xen is due to Xen adhering to a strict 
CPU scheduling algorithm.  In order to test this hypothesis, we 
ran the Xen tests again, attempting to force the hypervisor to 
reduce the amount of time reserved for the idle VMs.  We tried 
both pausing and shutting down the idle VMs for both of these 
tests. 

With paravirtualized Xen (Figure 3. ), we saw an all-around 
increase in performance, though even with three shutdown 
VMs (our best case scenario) the percentage of failures is larger 
than we saw with KVM.  In Figure 4. we show the results from 
running the same experiment with Xen running full 
virtualization.  With the other three VMs stopped, we finally 
achieve a lower failure rate than we see with KVM.  We found 
it interesting that the full virtualization Xen approach actually 
managed to perform better than the paravirtualized Xen.  
Obviously the full virtualization approaches are taking 
advantage of something that the paravirtualized approach 
cannot. 
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Figure 3.  Density of response times for 3 users on one VM with 

paravirtualized Xen variations 

 
Figure 4.  Density of response times for 3 users on one VM with full 

virtualization Xen variations 

TABLE VI.  RESPONSE TIMES (IN MILLISECONDS) FOR A SINGLE VM WITH 

2 MONITORS 

Approach Mean Min Max SD 

KVM 397.51 283.61 903.50 58.077 

Xen PV 412.13 270.29 882.83 90.532 

Xen PV (paused) 399.30 249.35 809.42 75.98 

Xen PV (shutdown) 396.66 277.32 813.85 78.649 

Xen FV 412.49 279.63 830.87 72.011 

Xen FV (paused) 398.39 272.37 930.90 66.027 

Xen FV (shutdown) 387.13 263.35 919.79 60.833 

Next, we looked at the performance of KVM and Xen with 
only 2 computations on each VM.  For these tests, no failures 
occurred, so we removed the failure percentage column from 
the results in TABLE VI.  As before, we also tried the Xen 

experiments with the three idle VMs both paused and 
shutdown. 

Even after pausing and shutting down the idle VMs, KVM 
is outperforming both Xen approaches in these experiments 
with a much lower standard deviation.  With the idle VMs 
shutdown, both Xen approaches do manage to achieve a lower 
mean runtime, but still maintain a higher standard deviation. 

To further analyze our results, we graphed the density of 
response times for KVM and Xen.  This can be seen in Figure 
5.  Interestingly, several of these density curves appear to be 
almost bimodal, most clearly seen in the KVM approach, but 
also apparent in the Xen with full virtualization approach.  
Interestingly, the paravirtualized Xen results do not show this 
bimodal behavior, just a slightly wider curve than we have seen 
previously. 

These bimodal ridges are not present in the base physical 
machine experiments, so must be an artifact of the interference 
of the hypervisor in the Xen FV and KVM experiments.  There 
seems to be some extra layer of interference found in the fully 
virtualized approaches that is not in the base approach and at 
least is much less apparent in the paravirtualized approach. 

 
Figure 5.  Density of response times for 2 monitors run in VMs controlled by 

KVM and Xen 

In Figure 6. the probability densities of responses for the 
paravirtualized Xen are displayed side by side.  Even as the 
other VMs are paused and shutdown, this approach still 
maintains a normal distribution.  This further gives credence to 
the theory that something is occurring in the full virtualization 
hypervisors which is not being seen in either the bare machine 
or paravirtualized instances. 

Figure 7. shows the detailed results of variations on the full 
virtualization Xen.  While the paused and stopped VM 
approaches are not as obviously bimodal as the original results, 
there is still the hint of it given the uneven falloff of the density 
ridges.  We are also seeing a steady procession of 
improvements as we pause and then stop the other VMs – 
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clearly the Xen hypervisor does reserve CPU cycles for VMs 
even when idling and paused. 

 
Figure 6.  Density of response times for 2 users on one VM with 

paravirtualized Xen variations 

 
Figure 7.  Density of response times for 2 users on one VM with full 

virtualization Xen variations 

V. FULL MACHINE EXPERIMENTS 

After determining baseline performance in the previous 
section, we next looked at scaling up to full machine 
experiments.  As we add more VMs and computations, each 
begins to compete for limited resources, and interesting 
behavior emerges.  Here we examine where the bottlenecks are 
occurring and why. 

First, we attempted to support 8 concurrent users with one 
physical machine hosting 4 VMs.  This means 2 computations 
running concurrently on each VM.  From the bare-bones 
approach, we could only support up to 9 concurrent users with 

a less than one percent failure rate; and from the single VM 
experiments, we can support 2 concurrent users without any 
failures.  The results of these tests are displayed in TABLE VII.  

TABLE VII.  RESPONSE TIMES (IN MILLISECONDS) FOR 8 MONITORS 

ACROSS 4 VMS 

Approach Mean Min Max SD %Failure 

KVM 754.29 322.45 1584.89 127.954 3.64 

Xen PV 781.63 344.98 1400.88 131.174 5.33 

Xen FV 785.37 370.47 1529.54 133.802 5.84 

Again, we are seeing that KVM is outperforming the Xen 
approaches with our CPU intensive task.  We again believe that 
this is a problem with the Xen hypervisor using a different 
strategy to apportion CPU times.  In this particular case, we 
believe that Xen is being outperformed by KVM because the 
hypervisor does not have enough processing available to 
handle the context switching.  A detailed view of the response 
times is shown below in Figure 8.  

 
Figure 8.  Density of response times for 8 users across 4 virtual machines 

To test our hypothesis that Xen is being outperformed by 
not leaving enough cycles free for the hypervisor, we attempted 
to support 6 users across 3 VMs, leaving the fourth VM idle on 
each machine.  This will leave more free cycles available to the 
hypervisor, so we should see that Xen is outperforming KVM.  
These results are shown below in TABLE VIII.  

TABLE VIII.  RESPONSE TIMES (IN MILLISECONDS)  FOR 6 MONITORS 

ACROSS 3 VMS 

Approach Mean Min Max SD %Failure 

KVM 574.94 287.94 1500.92 164.615 1.02 

Xen PV 588.93 286.21 1079.87 111.509 0.12 

Xen FV 596.73 315.34 1234.93 118.826 0.47 

Now we see Xen outperforming KVM overall, though it 
still has a worse minimum and mean runtime than KVM.  To 
better understand these results, we graphed the density of 
responses in Figure 9.  Here, we see that KVM has a distinct 
bimodal appearance, with a rather large standard deviation.  As 
this behavior doesn’t appear in the Xen with full virtualization, 
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it seems to be an artifact of KVM instead of due to full 
virtualization.  A major takeaway from these results is that Xen 
behaves much more reliably when the hypervisor has access to 
a dedicated CPU, as evidenced by the drastic decrease in 
failures ( a drop from 5.33% and 5.84% to less than 1%) as we 
move from overloading all 4 VMs to only using three. 

 
Figure 9.  Density of response times for 6 users across 4 virtual machines 

VI. CONCLUSIONS AND FUTURE WORK 

With this work we have taken a first step in evaluating 
virtual machines in the context of stream processing.  Our 
computation relating to classifying ECG data in real time 
involves high CPU overheads, a comparably small (100s of 
KB) memory footprint, moderate networking requirements, and 
steady bursts of short disk writes.  Stream processing 
computations typically have a moderate to large networking 
footprint – data is regularly sent to the node for processing, and 
results need to then be pushed out to either the user or another 
node for further processing.  Xen generally performs better 
with network communications, and the paravirtualized 
approach performs on par with a bare machine implementation 
for sustained, short writes. 

We also saw that KVM performed better with CPU 
intensive tasks – often outperforming even the paravirtualized 
Xen in many experiments.  As we moved on to the virtual 
machine stress tests, we found that KVM generally 
outperforms both para- and fullvirtualization Xen 
implementations when the physical machine is overloaded. 

Based on our experiments, we have two recommendations 
for the selection of hypervisor in the context of stream 
processing. In situations where there is control over the 
placement of VMs and collocated computations, the Xen 
hypervisor provides very good response times.  Once the 
hypervisor begins to become overloaded, however, KVM 
becomes the better choice. 

The work described here provides a basis to identify types 
of computations that are suitable for collocation and move 

towards intelligent computation placement.  By defining 
different types of computations based on their networking, 
disk, RAM, and CPU requirements we can determine which 
types are most likely to interfere with each other and take 
measures to minimize collocation.  This should help to reduce 
variance in response times, and reduce failure rates across the 
cluster by minimizing buffer overflow. 
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