
1

On the Performance of Virtualized Infrastructures for

Processing Realtime Streaming Data

Kathleen Ericson and Shrideep Pallickara

Colorado State University

Computer Science Department

Fort Collins, USA

{ericson, shrideep}@cs.colostate.edu

Abstract—Clouds have become ubiquitous and several data

processing tasks have migrated to these settings. The dominant

approach in cloud settings is to provision virtual machines (VMs)

rather than provision direct access to the physical machine. One

artifact of such provisioning is that multiple VMs may be

collocated on the same physical machine and possibly interfere

with each other. In this paper, we focus on the impact of

virtualized infrastructures on realtime stream processing; we use

the classification of electrocardiograms (ECG) as a motivating

example. Stream processing in such a setting strains resources

differently than the traditional web services or analytics on large

datasets traditionally performed in the cloud. In streaming

environments all processing per packet needs to be completed in

a timely manner, and the number and rate at which these packets

are generated is high. Our focus is to study the implications of

various combinations of virtualization strategies on the

performance of realtime stream processing. We have done

extensive performance benchmarks (using Xen and KVM) the

results of which form the basis for our recommendations for the

trade-offs involved in these settings.

Keywords-classification, health streams, Granules, Xen, KVM,

virtualization, stream processing.

I. INTRODUCTION

Health sensors are becoming pervasive as devices become
smaller and cheaper. These devices are invaluable in allowing
people to keep out of hospitals and maintain their normal
lifestyle when illnesses or age would previously have mandated
a regulated living environment. In such a situation, a user
would have multiple sensors constantly generating information
about their well-being. Such sensors may include monitors for
ECG, EEG, blood pressure, and even gyroscopes to determine
user orientation. In the past we have worked with classifying
EEG streams generated by electrodes placed on a person’s
scalp to allow them to interact with their environment [1].
Here we focus on classifying ECG data, determining if an
abnormal heartbeat has occurred.

To keep up with the expected growth of health sensors we
explore the capabilities of virtual machines in the context of
stream processing. By moving from a standalone solution to a
cloud of virtual machines we not only increase the amount of
simultaneous users we are able to support, but we also are able
to take advantage of data aggregation that has the potential to
improve the accuracy of the inference algorithms operating on

such data. Instead of only being able to build algorithms which
monitor user health from a small pool of people, these
algorithms could learn from thousands of users across a wide
geographic region – possibly finding connections that lead to
breakthroughs in the diagnosis of medical problems.

In this work our focus is to determine the suitability of
virtualized machines when working with streaming data while
placing time constraints on processing. Processing such
streaming data tends to strain resources differently from static
settings: packeets arrive continuously with processing being
performed for milliseconds per packet by memory-resident
computations that are activated when data arrives. When
anomalous events are detected, packets from the near past are
written to disk for further study. For these experiments, we
work with both Xen [2] and kernel virtual machine (KVM) [3]
hypervisors. We are using a classifier to detect anomalous
heartbeats among streaming ECG data. The goal is to return a
classification in real-time (e.g. before the next second of ECG
data is passed to the classifier). Our experiments analyze
performance across both dedicated machines and virtualized
resources. As cloud computing becomes ever more pervasive,
it is important to analyze the capabilities of various virtual
environments for processing this class of data in real-time.

We use the MIT-BIH arrhythmia dataset [4], which has
been used to train specialists to detect various types of
arrhythmias. Our computation consists of an R-based classifier
which determines whether a segment of ECG data contains an
abnormal heartbeat or not. An ECG signal comprises the
PQRST wave constructed from electrical activity reported by
electrodes placed on the chest. Each complete wave represents
a heartbeat. This is distinct (though related) from the heartbeat
heard using a stethoscope. If a heartbeat is flagged as
abnormal, the proceeding and following heartbeats should be
stored to disk for further analysis.

For our communications substrate, we use the Granules [5,
6] stream processing framework. Granules runs as a daemon
on a resource and can interleave multiple computations on the
same resource. The framework allows us to host low-overhead
computations that only activate when data is available on the
streams that they consume. The Granules framework also
incorporates the ability to use code written in different
languages as computations – namely our R-based classifiers.

2

Our experiments with virtualization involve both fully
virtualized and paravirtualized resources. Full virtualization
hypervisors run guest operating systems without any code
modification by creating virtual interfaces for all hardware
needs. While this means less up-front work to achieve a
running virtual machine (VM) instance, it also leads to a
potential slowdown in accessing and utilizing resources such as
RAM, CPU, and disk and network I/O. Paravirtualization
requires some operating system modification, but offers
performance near that of the physical machine. In our
experiments we look at KVM, which only runs in a fully
virtualized mode, as well as Xen, which has both full- and
para-virtualized modes.

Virtual machines are typically thought of as resources to
allow web services to scale as needed. They have also been
used in conjunction with Hadoop [7] for large MapReduce [8]
operations when a user does not have enough resources to
perform the operation locally. While web applications
typically require very fast response times, they do not usually
require a large amount of processing on the back end.
Alternatively, MapReduce applications tend to require a large
amount of processing, yet have no bounding time requirements.
Our application requires both a timely response and a large
amount of processing. Each packet requires processing in the
order of milliseconds, but there may be millions of packets
coming in to a single machine. In this respect, we are pushing
these hypervisors to their limits in our experiments.

A. Paper Contributions

To the best of our knowledge, this paper represents a first
exploration of the performance of various hypervisors in a
stream processing context. Stream processing requires the
quick and efficient processing of relatively small computations
at a very large scale. In a stream processing environment it is
necessary to process data at a rate no worse than the rate at
which data is being generated. If data is regularly processed
too slowly, incoming buffers will eventually fill and then
overflow: causing a loss of irreplaceable data. Because of this,
we need to ensure the reliable and timely completion of all
processing. A major goal of this work is to develop
recommendations for hypervisor choice for supporting stream
processing.

 We gather data about hypervisor behavior not only in an
idealized situation, but also under heavy loads. As we outlined
earlier, the computations stress several capabilities available at
a resource. By running these stress tests we get to isolate the
minimum requirements of the hypervisors themselves, as well
as determine how performance deteriorates in the face of
interference.

In a virtualized environment, interference from collocated
machines is a given. In most situations, users have no control
or knowledge of what other computations are currently running
on the same physical machine. When multiple computations
that share similar resource requirements are placed on the same
physical machine, performance of all VMs on the machine may
be negatively affected. By understanding how quickly this
falloff in performance occurs, we can develop methods to
detect and recover from such performance problems.

B. Paper Structure

The rest of this paper is organized as follows; Section II
discusses the technologies used here as well as related work,
while Section III describes our experimental approach and
introduces the dataset we use in our experiments. In Section IV
we work through several baseline experiments, then scale up to
stress tests in Section V. We then discuss our conclusions and
future work in Section VI.

II. BACKGROUND AND RELATED WORK

Granules [5, 6] is a stream processing framework which
allows processes to enter a dormant state between rounds of
execution. Granules further allows computations to build and
maintain state over time. Because of these features, Granules is
particularly suitable for sensor processing and has been
deployed in domains such as EEG classification [1], epidemic
modeling using discrete event simulations, and handwriting
recognition [9].

Xen [2] was developed as an attempt to leverage the
benefits of virtualization without needing special hardware and
minimizing the changes to existing operating system code.
Xen supports both full virtualization and paravirtualization
modes, meaning Xen can be run with full virtualization on
hardware that does not support paravirtualization. To allow
operating system code to run with minimal modifications, the
Xen host OS implements strong resource isolation which
creates the illusion that each guest OS is running on a bare
machine. Xen can support both Linux and Windows guests,
provided an altered operating system kernel is made available.

KVM [3] is a fully virtualized solution to virtual machine
provisioning. It is built into the Linux kernel, and does not
require any special hardware – this makes it a simple and
effective solution to virtualization, particularly in a Linux
environment. One weakness of KVM is in how it handles I/O
operations. Since it is fully virtualized, virtual machines
(VMs) do not have direct access to I/O interfaces and need to
make calls out to the host OS in order to read and write from
network and disk interfaces, leading to a high overhead for
these types of operations.

While other works [10, 11] have performed various
benchmarks with both Xen and KVM implementations, it has
been several years since comprehensive benchmarks were last
performed, on Xen 3.1 and KVM-60 in [10] and Xen 3.2.1 and
KVM-83 for [11]. Furthermore, these benchmarks were
designed to explore generic OS functionality, and do not reflect
the requirements inherent in stream processing. Stream
processing differs from generic processing in several ways.
Most notably are the strict turn-around times required for
stream processing: if we cannot process streaming data at least
as quickly as it is being generated we risk losing vital
information as buffers overflow.

Eucalyptus [12] is an Infrastructure as a Service (IaaS)
provider, and essentially manages groups of VMs hosted across
a physical cluster. It operates on a higher level than the Xen
and KVM hypervisors, and will handle the scheduling of jobs
across a pool of VMs. In this work we focus on exploring the
pros and cons of various hypervisors in the context of

3

distributed stream processing, so Eucalyptus is outside the
scope of our work.

Hadoop [7] is an open source implementation of
MapReduce [8], and often the defacto standard for cloud
processing benchmarks. Hadoop is not, however, designed to
handle streaming data and instead is designed to perform
distributed computations on a large amount of data stored on
disk in the form of files staged using the Hadoop Distributed
File System (HDFS) [13]. Instead, we are using Granules,
which has been designed expressly for performing arbitrary
computations on streaming data.

Works exploring virtual machines in the context of stream
processing systems have focused on the specific problem of
more efficiently sharing communications between collocated
VMs [14, 15]. These works assume a set hypervisor and
developed patches which help to speed up processing in certain
situations. KVM and Xen guest performance is neither directly
compared nor explored. These expansions have since been
incorporated into their respective code bases.

The MIT-BIH arrhythmia dataset has been used primarily
as a dataset in the area of machine learning [16-18]. Our work
moves in a different direction as the goal of this paper is not to
develop a highly trained ECG classifier, but instead explore the
behavior of VMs under different hypervisors in a streaming
environment. While we use our own trained neural networks
for ECG classification, Granules can schedule the processing of
arbitrary computations in a stream pipeline. There is nothing to
preclude the incorporation of a more rigorously trained and
tested classification system into our pipeline. A different
classifier would potentially involve a different processing
footprint, yet another ANN such as that described in [16]
would have an identical processing footprint as our approach
proposed here.

III. EXPERIMENTAL APPROACH

For our experiments we use quad-core machines with 12GB
RAM and 50GB disk space. Each core is capable of
hyperthreading, so we effectively have 8 cores available on
each machine. For the virtualized machines, each is given
2.5GB RAM, 8GB of disk space, and 2 cores.

For both hosts and guest operating systems, we are using
Fedora 16 (Verne). For Xen experiments we use Xen 3.4.2,
and for KVM we are using the version bundled with kernel
3.1.0. When configuring Granules resources, we are allocating
the JVM 2 GB RAM and 2 threads for the VM runs, and 8 GB
RAM with 8 threads for the pure physical machine runs –
effectively four times the resources available to a single VM.

A. Dataset

The MIT-BIH data set [4] is currently hosted by PhysioNet
[19]. This dataset has been accumulated from 1975-79, and is
the arrhythmia dataset used to train doctors to recognize
various arrhythmias. The data is gathered at a sampling rate of
360Hz from a pair of sensors. All patients had an upper and
lower lead sensor. The upper sensor is better at detecting the
full QRS complex, while the lower sensors are useful for the
detection of ectopic beats.

This dataset contains an annotation for each heartbeat,
marking each beat as normal, abnormal (in which case the
exact type is noted), or a decrease in signal quality which
makes classification difficult. We are specifically interested in
classifying each beat as either normal or abnormal, allowing us
to isolate abnormal beats and store them to disk for further
analysis.

Our ECG processing computation has 2 parts: First, we use
a windowing mechanism to store the last 10 seconds of ECG
signals in raw data format. Second, the raw data for each
heartbeat is passed to an Artifical Neural Network (ANN) [20]
for classification. Our neural network contains a single hidden
layer and that contains 10 hidden units. We perform training
offline, and then load a trained neural network into a
computation when we are ready to run classification tests. The
neural network is trained to classify one second bursts of ECG
data as either normal or abnormal.

 Should the last heartbeat be abnormal, the stored 10
second window of ECG data is written to disk. Every
incoming beat is then stored on disk until 10 seconds have
passed without any abnormal beats. This approach allows us to
store ‘interesting’ data to disk, allowing a healthcare
professional to later analyze data leading up to a potential
abnormal heartbeat, as well as any immediately following data
– allowing the arrhythmia to be viewed in context.

It is particularly important to store data from the
perspective of a health sensor monitoring system as data may
be used at a later date to assess new diagnoses. These snippets
of interesting data can also be used as a new training set for
machine learning approaches; for example, a classifier based
on support vector machines (SVMs) [21] could be devised.
Correctly classified abnormal data gives us specific windows of
interest – possibly allowing our algorithms to learn patterns
which lead up to various arrhythmias. Even if the data was
misclassified and normal heartbeats are saved, it becomes
useful for future rounds of training as that particular portion of
data was obviously difficult for the current classifier to
correctly classify. While there is an argument to storing all
data – as it all may be useful for doctor analysis and the
training of future classifiers – it is simply infeasible to assume
that all data can be stored since the storage requirements will
quickly outpace available disk capacity.

IV. BASELINE EXPERIMENTS

For our baseline experiments, we work with three physical
machines. One machine has a base Fedora 16 install, one is a
KVM host, and the third is a Xen host. Each host (both Xen
and KVM) manages 4 guest operating systems with minimal
Fedora 16 installs. For all tests, the JVM is configured to use
up to 2GB of RAM and run two threads. This means that the
JVM has the exact same resources as on each VM, giving us a
more fair comparison of overheads.

First, we need to determine the baseline performance of a
single monitoring computation on the base physical machine
well as a single guest VM in both KVM and Xen. We first
looked at the computation processing times, the results of
which are displayed below in TABLE I. This benchmark
encompasses the amount of time spent after receiving a

4

message, before a response is generated and sent back to the
user, but not the amount of time required to interpret the
message to determine whether it is incoming data or an internal
communication (notices of machine failure, state passing
between replicas, etc.).

TABLE I. COMPUTATION PROCESSING TIMES FOR A SINGLE

MONITOR(IN MS)

Approach Mean Min Max SD

Base 304.71 228.66 529.75 45.704

KVM 333.11 248.06 577.35 49.612

Xen PV 317.05 224.92 584.45 48.14

Xen FV 340.75 250.54 585.14 51.950

From these results, we see a best case performance in the
case of the base install – this is expected since it is running on
the physical machine. There is no hypervisor introducing
overheads by doling out resource accesses. While the
paravirtualized Xen (Xen PV hereafter) is generally
outperforming KVM, it does have a worse maximum runtime.
The fully virtualized Xen (Xen FV hereafter) is simply
performing poorly across the board.

The amount of time interpreting the message, as well as the
communications overheads are the difference between the
round-trip communications times which are displayed below in
TABLE II. and the computation processing time displayed
above in TABLE I.

The paravirtualized Xen again performs closest to the
baseline physical machine, followed by KVM and the full
virtualization Xen instance. While Xen with full virtualization
had a worse mean and minimum communications time, it also
had a lower maximum and standard deviation than KVM. The
previous results show that KVM can perform better for the
CPU intensive processing, but here we see that even the full
virtualization Xen has more reliable performance once we take
into account networking-based operations.

TABLE II. ROUND TRIP COMMUNICATIONS FOR A SINGLE MONITOR (IN

MILLISECONDS)

Approach Mean Min Max SD

Base 349.54 272.80 716.58 48.097

KVM 379.11 292.88 774.31 52.139

Xen PV 361.65 269.83 607.82 47.86

Xen FV 385.39 294.83 629.80 51.998

For this round of experiments, we enabled disk writes,
meaning that the computation will store any inputs flagged as
abnormal to disk. This part of the experiment stresses short,
repeated writes to disk, the results of which can be seen in
TABLE III. Here both the para- and full virtualization Xen
approaches outperformed KVM, even achieving a lower mean
than the base Fedora install. The Xen hypervisor is obviously
doing a better job of streamlining writes to disk than KVM.
Given KVMs added overheads for I/O operations, we expected
to see this behavior.

These tests reinforced the original expectation that Xen
performs best in situations with many writes and networking
requirements. We also saw that Xen does not perform as well
for CPU bound operations. One reason why we may be seeing
this is that the Xen hypervisor is simply more strict in ensuring

isolation between VMs. For these tests, only one VM was
running, while the other 3 were simply idling. It is possible
that KVM is allowing the one running VM to monopolize the
processor, while Xen enforces a stricter scheduling policy,
meaning it can’t take advantage of spare cycles when other
VMs are idling.

TABLE III. SHORT WRITE TIMES FOR A SINGLE MONITOR (IN

MILLISECONDS)

Approach Mean Min Max SD

Base 1.55 0.88 16.16 1.372

KVM 3.23 1.94 23.67 3.06

Xen PV 1.24 0.90 16.35 1.035

Xen FV 1.52 0.91 20.75 1.861

A. Single Physical Machine Stress Tests

After analyzing the footprint of a single monitoring
computation, we moved on to determine the maximum number
of monitors we could support on a single physical machine (no
virtualization), as well as the number supportable on a single
VM (both in KVM and Xen). Knowing the limits of the single
physical machine gives us a guideline as we scale up to using
all 4 VMs on a single physical machine.

TABLE IV. RESPONSE TIMES (IN MILLISECONDS) FOR A SINGLE PM

Monitors Mean Min Max SD %Failure

12 822.22 348.01 1819.22 174.798 14.46

10 689.91 313.87 1490.86 129.312 2.04

9 621.16 333.77 1246.17 107.659 0.47

8 545.97 310.18 1088.39 83.260 0.13

We ran several tests with 12, 10, 9, and 8 concurrent
monitors running on a single machine. For these tests we
configured the JVM to use 8 threads and allowed it a maximum
of 8GB of RAM. We chose these settings as they are four
times what one of our VMs are configured to handle.

TABLE IV. shows the round-trip response times for
monitors on a single physical machine. A message is deemed a
failure if it takes longer than one second (1000 ms) to return to
the user. At first, the failure rate drops rapidly as we move
from 12 to 10 concurrent ECG monitoring computations, with
limited returns as we reduce the number of concurrent monitors
to eight.

To investigate this further, we looked at the probability
distribution of our round-trip results. From Figure 1. we can
see that as we reduce the number of ECG monitors, we are not
only slowly shifting our average response to the left (quicker
responses), we are also lowering the standard deviation
dramatically (narrower peaks). Looking back at TABLE IV.
we can corroborate the steady decrease in both standard
deviation and mean runtime as we move from 12 to 8 monitors.

Based on these results from a physical machine, we know
that a solution involving VMs should aim to support about 8
concurrent monitors (in total). While we expect decreased
performance as we move to VMs, we still hope to maintain a
less than one percent failure rate.

5

Figure 1. Density of response times for 8, 9, 10, and 12 concurrent monitors

on a single physical machine.

B. Single Virtual Machine Stress Tests

For these experiments, we focus on stress testing a single
virtual machine. Unless otherwise noted, the other 3 VMs on
the same physical machine are simply idling - they have been
provisioned and are running, but no computations are occurring
on them.

First, we tried supporting three concurrent monitors in a
single VM. While this is probably not sustainable as we move
up to using all VMs on the physical machine, as the base install
physical machine could not support 12 concurrent users, it is
worthwhile to determine how our setup behaves when
overloaded. These results can be seen below in TABLE V.

TABLE V. RESPONSE TIMES (IN MILLISECONDS) FOR A SINGLE VM WITH

3 MONITORS

Approach Mean Min Max SD %Failure

KVM 558.77 284.25 1143.98 147.586 0.78

Xen PV 596.28 273.90 1478.85 183.12 3.81

Xen PV (paused) 552.70 295.27 1290.84 148.610 1.35

Xen PV

(shutdown)
540.00 263.28 1510.87 145.86 1.17

Xen FV 553.66 291.88 1413.83 152.503 1.62

Xen FV (paused) 543.01 279.36 1302.60 144.56 1.22

Xen FV

(shutdown)
524.23 282.30 1173.89 130.833 0.66

In this experiment, we were expecting to see Xen PV
outperforming KVM, since Xen offers paravirtualization
support instead of the fully virtualized KVM. While we do see
that Xen with paravirtualization has a lower minimum runtime,
the mean, maximum, standard deviation, and failure rate are
higher with Xen PV than KVM. One theory is that the Xen
hypervisor is again attempting to be too fair in scheduling, and
is restricting the CPU usage (our bottleneck) of the single VM
which is performing computations in order to give the other
VMs (which are idling) a chance to submit data for processing.
The KVM hypervisor, on the other hand, seems to be much

more willing to allow the single running VM to monopolize the
queue.

Figure 2. Density of response times for 3 users on a single Virtual Machine

hosted by KVM, Xen with full virtualization, and Xen with paravirtualization

Of interest in these results is the fact that the full
virtualization Xen install is actually outperforming the
paravirtualized version. From the results in TABLE V. it’s not
entirely clear why this is happening. By looking at the density
of the response times in Figure 2. we can get more insight into
this behavior. All implementations appear to have an almost
bimodal distribution, which can skew our mean and standard
deviation calculations. From the figure, the paravirtualized
Xen guest is actually returning results most often just below the
500ms mark, clearly outperforming the KVM implementation
with results very near the Xen guest with full virtualization.

As we discussed previously, one possibility as to why
KVM can outperform Xen is due to Xen adhering to a strict
CPU scheduling algorithm. In order to test this hypothesis, we
ran the Xen tests again, attempting to force the hypervisor to
reduce the amount of time reserved for the idle VMs. We tried
both pausing and shutting down the idle VMs for both of these
tests.

With paravirtualized Xen (Figure 3.), we saw an all-around
increase in performance, though even with three shutdown
VMs (our best case scenario) the percentage of failures is larger
than we saw with KVM. In Figure 4. we show the results from
running the same experiment with Xen running full
virtualization. With the other three VMs stopped, we finally
achieve a lower failure rate than we see with KVM. We found
it interesting that the full virtualization Xen approach actually
managed to perform better than the paravirtualized Xen.
Obviously the full virtualization approaches are taking
advantage of something that the paravirtualized approach
cannot.

6

Figure 3. Density of response times for 3 users on one VM with

paravirtualized Xen variations

Figure 4. Density of response times for 3 users on one VM with full

virtualization Xen variations

TABLE VI. RESPONSE TIMES (IN MILLISECONDS) FOR A SINGLE VM WITH

2 MONITORS

Approach Mean Min Max SD

KVM 397.51 283.61 903.50 58.077

Xen PV 412.13 270.29 882.83 90.532

Xen PV (paused) 399.30 249.35 809.42 75.98

Xen PV (shutdown) 396.66 277.32 813.85 78.649

Xen FV 412.49 279.63 830.87 72.011

Xen FV (paused) 398.39 272.37 930.90 66.027

Xen FV (shutdown) 387.13 263.35 919.79 60.833

Next, we looked at the performance of KVM and Xen with
only 2 computations on each VM. For these tests, no failures
occurred, so we removed the failure percentage column from
the results in TABLE VI. As before, we also tried the Xen

experiments with the three idle VMs both paused and
shutdown.

Even after pausing and shutting down the idle VMs, KVM
is outperforming both Xen approaches in these experiments
with a much lower standard deviation. With the idle VMs
shutdown, both Xen approaches do manage to achieve a lower
mean runtime, but still maintain a higher standard deviation.

To further analyze our results, we graphed the density of
response times for KVM and Xen. This can be seen in Figure
5. Interestingly, several of these density curves appear to be
almost bimodal, most clearly seen in the KVM approach, but
also apparent in the Xen with full virtualization approach.
Interestingly, the paravirtualized Xen results do not show this
bimodal behavior, just a slightly wider curve than we have seen
previously.

These bimodal ridges are not present in the base physical
machine experiments, so must be an artifact of the interference
of the hypervisor in the Xen FV and KVM experiments. There
seems to be some extra layer of interference found in the fully
virtualized approaches that is not in the base approach and at
least is much less apparent in the paravirtualized approach.

Figure 5. Density of response times for 2 monitors run in VMs controlled by

KVM and Xen

In Figure 6. the probability densities of responses for the
paravirtualized Xen are displayed side by side. Even as the
other VMs are paused and shutdown, this approach still
maintains a normal distribution. This further gives credence to
the theory that something is occurring in the full virtualization
hypervisors which is not being seen in either the bare machine
or paravirtualized instances.

Figure 7. shows the detailed results of variations on the full
virtualization Xen. While the paused and stopped VM
approaches are not as obviously bimodal as the original results,
there is still the hint of it given the uneven falloff of the density
ridges. We are also seeing a steady procession of
improvements as we pause and then stop the other VMs –

7

clearly the Xen hypervisor does reserve CPU cycles for VMs
even when idling and paused.

Figure 6. Density of response times for 2 users on one VM with

paravirtualized Xen variations

Figure 7. Density of response times for 2 users on one VM with full

virtualization Xen variations

V. FULL MACHINE EXPERIMENTS

After determining baseline performance in the previous
section, we next looked at scaling up to full machine
experiments. As we add more VMs and computations, each
begins to compete for limited resources, and interesting
behavior emerges. Here we examine where the bottlenecks are
occurring and why.

First, we attempted to support 8 concurrent users with one
physical machine hosting 4 VMs. This means 2 computations
running concurrently on each VM. From the bare-bones
approach, we could only support up to 9 concurrent users with

a less than one percent failure rate; and from the single VM
experiments, we can support 2 concurrent users without any
failures. The results of these tests are displayed in TABLE VII.

TABLE VII. RESPONSE TIMES (IN MILLISECONDS) FOR 8 MONITORS

ACROSS 4 VMS

Approach Mean Min Max SD %Failure

KVM 754.29 322.45 1584.89 127.954 3.64

Xen PV 781.63 344.98 1400.88 131.174 5.33

Xen FV 785.37 370.47 1529.54 133.802 5.84

Again, we are seeing that KVM is outperforming the Xen
approaches with our CPU intensive task. We again believe that
this is a problem with the Xen hypervisor using a different
strategy to apportion CPU times. In this particular case, we
believe that Xen is being outperformed by KVM because the
hypervisor does not have enough processing available to
handle the context switching. A detailed view of the response
times is shown below in Figure 8.

Figure 8. Density of response times for 8 users across 4 virtual machines

To test our hypothesis that Xen is being outperformed by
not leaving enough cycles free for the hypervisor, we attempted
to support 6 users across 3 VMs, leaving the fourth VM idle on
each machine. This will leave more free cycles available to the
hypervisor, so we should see that Xen is outperforming KVM.
These results are shown below in TABLE VIII.

TABLE VIII. RESPONSE TIMES (IN MILLISECONDS) FOR 6 MONITORS

ACROSS 3 VMS

Approach Mean Min Max SD %Failure

KVM 574.94 287.94 1500.92 164.615 1.02

Xen PV 588.93 286.21 1079.87 111.509 0.12

Xen FV 596.73 315.34 1234.93 118.826 0.47

Now we see Xen outperforming KVM overall, though it
still has a worse minimum and mean runtime than KVM. To
better understand these results, we graphed the density of
responses in Figure 9. Here, we see that KVM has a distinct
bimodal appearance, with a rather large standard deviation. As
this behavior doesn’t appear in the Xen with full virtualization,

8

it seems to be an artifact of KVM instead of due to full
virtualization. A major takeaway from these results is that Xen
behaves much more reliably when the hypervisor has access to
a dedicated CPU, as evidenced by the drastic decrease in
failures (a drop from 5.33% and 5.84% to less than 1%) as we
move from overloading all 4 VMs to only using three.

Figure 9. Density of response times for 6 users across 4 virtual machines

VI. CONCLUSIONS AND FUTURE WORK

With this work we have taken a first step in evaluating
virtual machines in the context of stream processing. Our
computation relating to classifying ECG data in real time
involves high CPU overheads, a comparably small (100s of
KB) memory footprint, moderate networking requirements, and
steady bursts of short disk writes. Stream processing
computations typically have a moderate to large networking
footprint – data is regularly sent to the node for processing, and
results need to then be pushed out to either the user or another
node for further processing. Xen generally performs better
with network communications, and the paravirtualized
approach performs on par with a bare machine implementation
for sustained, short writes.

We also saw that KVM performed better with CPU
intensive tasks – often outperforming even the paravirtualized
Xen in many experiments. As we moved on to the virtual
machine stress tests, we found that KVM generally
outperforms both para- and fullvirtualization Xen
implementations when the physical machine is overloaded.

Based on our experiments, we have two recommendations
for the selection of hypervisor in the context of stream
processing. In situations where there is control over the
placement of VMs and collocated computations, the Xen
hypervisor provides very good response times. Once the
hypervisor begins to become overloaded, however, KVM
becomes the better choice.

The work described here provides a basis to identify types
of computations that are suitable for collocation and move

towards intelligent computation placement. By defining
different types of computations based on their networking,
disk, RAM, and CPU requirements we can determine which
types are most likely to interfere with each other and take
measures to minimize collocation. This should help to reduce
variance in response times, and reduce failure rates across the
cluster by minimizing buffer overflow.

REFERENCES

[1] K. Ericson, et al., "Analyzing Electroencephalograms Using Cloud
Computing Techniques," in IEEE Conference on Cloud Computing
Technology and Science, Indianopolis, USA, 2010.

[2] P. Barham, et al., "Xen and the art of virtualization," presented at the
Proceedings of the nineteenth ACM symposium on Operating systems
principles, Bolton Landing, NY, USA, 2003.

[3] A. Kivity, et al., "kvm: the Linux Virtual Machine Monitor," in Linux
Symposium, Ottawa, Canada, 2007, pp. 225-330.

[4] M. GB and M. RG, "The impact of the MIT-BIH Arrhythmia Database,"
IEEE Eng in Med and Biol, vol. 20, pp. 45-50, May-June 2001 2001.

[5] S. Pallickara, et al., "Granules: A Lightweight, Streaming Runtime for
Cloud Computing With Support for Map-Reduce," in IEEE International
Conference on Cluster Computing, New Orleans, LA., 2009.

[6] S. Pallickara, et al., "An Overview of the Granules Runtime for Cloud
Computing," in IEEE International Conference on e-Science,
Indianapolis, 2008.

[7] T. White, Hadoop: The Definitive Guide, 1 ed.: O'Reilly Media, 2009.

[8] J. Dean and S. Ghemawat, "Mapreduce: Simplified data processing on
large clusters," ACM Commun., vol. 51, pp. 107-113, Jan. 2008 2008.

[9] K. Ericson, et al., "Handwriting Recognition using a Cloud Runtime," in
Colorado Celebration of Women in Computing, Golden, 2010.

[10] A. Chierici and R. Veraldi, "A quantitative comparison between xen and
kvm," Journal of Physics: Conference Series, vol. 219, p. 042005, 2010.

[11] C. Jianhua, et al., "Performance Measuring and Comparing of Virtual
Machine Monitors," in Embedded and Ubiquitous Computing, 2008.
EUC '08. IEEE/IFIP International Conference on, 2008, pp. 381-386.

[12] D. Nurmi, et al., "The Eucalyptus Open-Source Cloud-Computing
System," in Cluster Computing and the Grid, 2009. CCGRID '09. 9th
IEEE/ACM International Symposium on, 2009, pp. 124-131.

[13] D. Borthakur. (2007). The Hadoop Distributed File System: Architecture
and Design. Available:
http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.pdf

[14] J. Liu and B. Abali, "Virtualization polling engine (VPE): using
dedicated CPU cores to accelerate I/O virtualization," presented at the
Proceedings of the 23rd international conference on Supercomputing,
Yorktown Heights, NY, USA, 2009.

[15] X. Zhang, et al., "XenSocket: a high-throughput interdomain transport
for virtual machines," presented at the Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on Middleware,
Newport Beach, California, 2007.

[16] S. G. Artis, et al., "Detection of atrial fibrillation using artificial neural
networks," in Computers in Cardiology 1991, Proceedings., 1991, pp.
173-176.

[17] C. Philip de, et al., "Automatic classification of heartbeats using ECG
morphology and heartbeat interval features," Biomedical Engineering,
IEEE Transactions on, vol. 51, pp. 1196-1206, 2004.

[18] M. G. Tsipouras, et al., "An arrhythmia classification system based on
the RR-interval signal," Artificial Intelligence in Medicine, vol. 33, pp.
237-250, 2005.

[19] A. L. Goldberger, et al., "PhysioBank, PhysioToolkit, and PhysioNet :
Components of a New Research Resource for Complex Physiologic
Signals," Circulation, vol. 101, pp. e215-e220, June 13, 2000 2000.

[20] B. Yegnanarayana, Artificial Neural Networks: Prentice-Hall of India,
2004.

[21] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning,
vol. 20, pp. 273-297, 1995.

http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.pdf

9

